

CTI Thermal Certification Test Report

2025 Annual Reverification Test

On the Bell Cooling Towers, Pvt., Ltd. (Bell)
BCTI Series, Model BCTI-050X
1-cell, Induced-Draft, Counterflow Cooling Tower

Tested at the Jaquar IMT Manesar In India

For Bell Cooling Towers, Pvt., Ltd. 136 Charmwood Plaza Eros Garden, Surajkund Road Faridabad (Haryana) 102009 India

Test Date: July 8, 2024 CTI Test Number: T43A-218-25A

Prepared by: Michael G. Womack, P.E.

CTI Thermal Certification Administrator

c/o CleanAir Engineering

Summary

McHale & Associates, Inc. (McHale) has been designated by the Cooling Technology Institute (CTI) to conduct thermal certification tests as set forth in the CTI STD-201(21) certification standard. An Annual Reverification Test was performed for Bell Cooling Towers, Pvt., Ltd. (Bell) on their BCTI Series, Model BCTI-050X, 1-cell, Induced-Draft, Counterflow Cooling Tower. The test was conducted at the Jaquar IMT Manesar in India. The purpose of the CTI Annual Reverification Test was to verify the thermal performance of the subject tower as required to maintain CTI certification of the line of cooling towers. The work was performed by McHale as an independent contractor licensed by the CTI for STD-201 testing services.

The 2025 Annual Reverification Test was conducted on July 8, 2024, in accordance with the CTI Standard for Performance Rating of Evaporative Heat Rejection Equipment, STD-201RS(21). The test data were acquired in accordance with the CTI Acceptance Test Code for Water-Cooling Towers, ATC-105(22). All thermal parameters were measured with precision platinum RTD temperature probes and recorded using a data acquisition system consisting of a multi-channel data logger interfaced with a laptop computer. The circulating water flow was measured using a hydraulic pitot tube with an air-over-water manometer. Fan motor power was measured with a clamp-on digital kilowatt meter. Following the test, the computer system was used to average the test data, assist with selection of time periods for analysis, and calculate the test results.

The test results were calculated for one time period selected during the Annual Reverification Test by using the manufacturer's expanded ratings table and the methods of analysis as specified in the CTI STD-201 certification standard. The data indicate that the Bell Cooling Towers, Pvt., Ltd. Model BCTI-050X cooling tower was operating at 110.0% of its published capacity during the test on July 8, 2024 which exceeds the 95% minimum allowed by the CTI STD-201.

Therefore, the Bell Cooling Towers, Pvt., Ltd., BCTI Series of cooling towers has fulfilled the test requirement to maintain thermal certification per CTI STD-201.

The CTI STD-201 Certification requires the successful completion of a CTI Annual Reverification Test on a different model each year to remain in effect in the subsequent year.

Prepared by:

Michael G. Womack, P.E.

CTI Thermal Certification Administrator

Test on Bell Model BCTI-050X

July 8, 2024

Cooling Technology Institute

Test Calculations (IP Units: °F, gpm & in-Hg)

File No. BCTI-050X	Date	Time Period** 14:36:00-15:33:00
Model No. BCTI-050X	Location Jaquar IMT Manesar	TAN # T43A-218-25A
Note: Evaluated as BCTI-050XE		

**Shortened time period due to end of period upset

Test Data

Hot Water, °F =	94.01	Cold Water, °F =	86.60	Wet Bulb, °F =	79.22
Tower Flow, gpm =	956.58	Makeup Flow,gpm =	N/A	Makeup Temp, °F =	N/A
Test Fan Power, Hp =	11.68	0 np Pressure, psi =	N/A	Barometer, in-Hg =	28.72
Rated Fan Power, Hp =	12.40	Dry Bulb, °F =	83.98	Relative Humidity, % =	81.54

Calculated Values

Pump Correction = 0.002966 * psi / Pump Efficiency:	PC =	0.00	_°F
Evaporation = 0.00085 * Flow * Range	Evap =	N/A	_gpm
Makeup Correction = (CWT + PC - MUT) * MUF / (Tower Flow - MUF)	MC =	N/A	°F
CCWT = CWT + PC + MC	CCWT =	86.60	¯°F
Range = HWT - CCWT	Range =	7.41	°F
Approach = CCWT - WBT	Approach =	7.38	°F
	_		_

Cataloged Water Flo	w for Wet Bulk	o = <u>79.0</u>	_°F		
	6.00 Range	e 7.41	Range	7.50	Range
	965.01	841.58		833.63	
7.38 Approach	1005.69	874.35		865.88	
8.00 Approach	1073.44	928.92	_	919.60	
Cataloged Water Flo	w for Wet Bulk	0.08	°F		
	6.00 Range	e 7.41	Range	7.50	Range
7.00 Approach	986.70	862.08		854.05	
7.38 Approach	1028.54	896.84		888.35	
8.00Approach	1098.22	954.74	_	945.49	
Cataloged Water Flo	w for Wet Bulk	o = 79.22	°F		879.36

Adjusted Test Flow = Test Flow * [Fan Power (design) / Fan Power (test)] (1/3)

Adjusted Test Flow (@ test barometer) = 975.90

Barometric Factor {Inches Mercury} = 1 + (0.0078 *(BPstd - BPtst))

Barometric Factor = 1.009360

Adjusted Corrected Test Flow (with BP correction) = Adjusted Test Flow / Barometric Factor

Adjusted Corrected Test Flow (@ standard barometer) = 966.85

Percent Capability = Adjusted Corrected Test Flow / Predicted Test Flow * 100

Percent Capability = 109.95 %

151

Excerpt from Performance Rating Table (Provided by OEM)

1st Data Bloc	k Wet	Wet Bulb =		
	Ranges	6.00	7.50	
Approach =	7.00	965.01	833.63	
Approach =	8.00	1073.44	919.60	
2nd Data Bloc	2nd Data Block Wet		80	
	Ranges	6.00	7.50	
Approach =	7.00	986.70	854.05	
Approach =	8.00	1098.22	945.49	

Source: BCTI-XEmatrixRerated29Sep2022.xls

BCTI-50X: Thermal Data

McHale Project: IP240102 Bell Cooling Towers Limited BCTI-50X

OPERATING CONDITIONS - CTI STD 201 Limits								
Description	Units	CTI STD 201 Limit	Tes 08/0 14:36- Test Value	7/24				
Limits of Thermal Operating Conditions Wet Bulb Temperature Maximum Process Fluid Temperature Minimum Range Minimum Approach Circulating Water Flow Barometric Pressure Fan driver output power	Deg F Deg F Deg F Deg F % inHg %	50 to 90 125 4 5 60% to 140% 27 to 31	79.2 94.0 7.4 7.4 126.5 28.7 4.25	PASS PASS PASS PASS PASS PASS PASS				

CONSISTANCY OF TEST CONDITIONS - CTI ATC 105 Limits								
Description	Description Units CTI ATC 105 Limit Test 08/07/ Limit 14:36-1: Test Value							
Heat I and								
<u>Heat Load</u> Range	%	5	4.1	PASS				
Wet Bulb Temperature								
Linear Trend	Deg C/hr	1	0.3	PASS				
Max Deviation from Test Average	Deg C	1.5	0.4	PASS				

Cooling Technology Institute Fan Power Data Sheet - IP

Location Jaqu		ar IMT Mar	nesar			File No.	BCTI-	050X		
		.72				TAN#	T43A-2	18-25A		
		Fluk	e 39				Date	7/8/2	2024	
Tower Mode	I	BCTI	-050X				Time	16:	20	
Fan	Volt	Volt	Amp	Amp	KW	KW	KW	Motor	HP	
ID	(1)	(2)	(1)	(2)	(1)	(2)	Total	Eff.		
A	414	414.1	10.16	9.85	4.32	1.34	5.66	0.800	6.07	
В	414.8	419	9.63	9.98	4.04	1.21	5.25	0.800	5.63	
	•				I	•				
Avera	ges	415.5		9.9		Sum:	10.910	Sum:	11.700	
			Mot	or Namor	alata Data					
E					olate Data			N I I I'	- (NEO)	
Frame:			Voltage:					•		
RPM:			Amps:				Efficiency:		0.8	
HP:			SF:			Power Fa	actor:			
Doto			Line	e Loss Ca	alculation					
Data:	\ A (')		400		3 A C	0.	,	_		
			6.8 Wire Size			6				
	Average Ampere9.9		91	Moto	or Eff.	0.800				
Results:										
			10.	91	HP (m	neasured)	d) 11.70			
KW (loss)		0.0		HP (Ic	·					
	KW (net)			0.89 Test HP (net)		,	11.68			
	(1.01)			_ - •		(· - •		

Cooling Technology Institute

Water Flow Data Sheet

FILE NO. BCTI-050X DATE: 07/08/24

TAN# T43A-218-25A

PITOT STYLE: Elliptical PIPE IDENTITY: Hot Water Supply

Standard PITOT TYPE: NOMINAL PIPE DIAMETER (in): 8.625984252 18006 SERIAL NUMBER: AVERAGE PIPE AREA (ft²): 0.40583 DATE CALIBRATED: February-2024 PITOT FLUID TYPE: Water PITOT COEFFICIENT: 0.7609 FLUID TEMPERATURE (°F): 96.8

		TAP:	Side	TAP:	Тор
		TIME:	15:30	TIME:	16:15
		DIAMETER (in):	8 5/8	DIAMETER (in):	8 5/8
STATION NUMBER	RELATIVE LOCATION	LOCATION (in)	DEFLECTION d (in)	LOCATION (in)	DEFLECTION d (in)
1	0.0257	0 4/16	5 10/16	0 4/16	6 12/16
2	0.0817	0 11/16	7 6/16	0 11/16	8 13/16
3	0.1464	1 4/16	8 10/16	1 4/16	11 6/16
4	0.2261	1 15/16	11 0/16	1 15/16	12 0/16
5	0.3419	2 15/16	10 14/16	2 15/16	9 8/16
CP	0.5000	4 5/16	9 0/16	4 5/16	9 13/16
6	0.6581	5 11/16	11 0/16	5 11/16	12 13/16
7	0.7739	6 11/16	6 12/16	6 11/16	6 6/16
8	0.8536	7 6/16	6 10/16	7 6/16	8 12/16
9	0.9183	7 15/16	7 3/16	7 15/16	11 1/16
10	10 0.9743 8 6/16		6 12/16	8 6/16	11 1/16
		Diam 1 ∑√d	28.41	Diam 2 ∑√d	31.20
		Diam 1 Avg √d	2.841	Diam 2 Avg √d	3.120
			Pipe Average √d	2.9803	

FLOW, US GPM = 956.6